🔥🔥🔥本篇笔记所对应的视频 https://youtu.be/2vDeBSb60xo
chainlit安装
安装
pip install chainlit
#运行
chainlit run app-ui.py -w
yfinance安装
yfinance 是一个 Python 库,用于从 Yahoo Finance 下载市场数据。它提供了一种线程化和 Python 化的方式来获取股票、ETF、共同基金、货币、期权等金融工具的历史和实时数据。
pip install yfinance
llama-agents安装
pip install llama-agents llama-index-agent-openai llama-index-embeddings-openai llama-index-program-openai
#.env文件中放入api key
OPENAI_API_KEY=sk-xxx
ANTHROPIC_API_KEY=sk-xxx
https://docs.llamaindex.ai/en/stable/api_reference/llms/ollama/
ollama接口支持示例
from llama_index.llms.ollama import Ollama
ollama_llm = Ollama(model="gemma2", request_timeout=120.0)tool = FunctionTool.from_defaults(fn=<function>)agent1 = ReActAgent.from_tools([tool], llm=ollama_llm)
agent2 = ReActAgent.from_tools([], llm=ollama_llm)
👉👉👉如有问题请联系我的徽信 stoeng
🔥🔥🔥本项目代码由AI超元域频道制作,观看更多大模型微调视频请访问我的频道⬇
👉👉👉我的哔哩哔哩频道
👉👉👉我的YouTube频道
👉👉👉我的开源项目 https://github.com/win4r/AISuperDomain
Anthropic接口支持示例
import os
from dotenv import load_dotenv
import yfinance as yf
from llama_agents.launchers.local import LocalLauncher
from llama_agents.services import AgentService, ToolService
from llama_agents.tools import MetaServiceTool
from llama_agents.control_plane.server import ControlPlaneServer
from llama_agents.message_queues.simple import SimpleMessageQueue
from llama_agents.orchestrators.agent import AgentOrchestrator
from llama_index.core.agent import FunctionCallingAgentWorker
from llama_index.core.tools import FunctionTool
from llama_index.llms.openai import OpenAI
from llama_index.llms.anthropic import Anthropic
from llama_index.llms.ollama import Ollama
# 加载.env文件
load_dotenv()# 从环境变量中获取API密钥
api_key = os.getenv("ANTHROPIC_API_KEY")# 确保API密钥已设置
if not api_key:
raise ValueError("ANTHROPIC_API_KEY not found in .env file")# 设置OpenAI API密钥
os.environ["ANTHROPIC_API_KEY"] = api_key# 其余代码保持不变
def get_stock_price(symbol: str) -> str:
"""获取给定股票代码的当前价格"""
try:
stock = yf.Ticker(symbol)
data = stock.history(period="1d")
if not data.empty:
current_price = data['Close'].iloc[-1]
return f"The current price of {symbol} is ${current_price:.2f}"
else:
return f"Unable to fetch the current price for {symbol}. The stock data is empty."
except Exception as e:
return f"Error fetching stock price for {symbol}: {str(e)}"def get_company_info(symbol: str) -> str:
"""获取给定股票代码的公司信息"""
try:
stock = yf.Ticker(symbol)
info = stock.info
return f"{info['longName']} ({symbol}) is in the {info.get('sector', 'Unknown')} sector. {info.get('longBusinessSummary', '')[:200]}..."
except Exception as e:
return f"Error fetching company info for {symbol}: {str(e)}"stock_price_tool = FunctionTool.from_defaults(fn=get_stock_price)
company_info_tool = FunctionTool.from_defaults(fn=get_company_info)# 指定 OpenAI 模型
llm = Anthropic(model="claude-3-sonnet-20240229")
# create our multi-agent framework components
message_queue = SimpleMessageQueue()
tool_service = ToolService(
message_queue=message_queue,
tools=[stock_price_tool, company_info_tool],
running=True,
step_interval=0.5,
)
control_plane = ControlPlaneServer(
message_queue=message_queue,
orchestrator=AgentOrchestrator(llm=llm),
)
meta_tools = [
MetaServiceTool(
tool_metadata=tool.metadata,
message_queue=message_queue,
tool_service_name=tool_service.service_name,
) for tool in [stock_price_tool, company_info_tool]
]
worker1 = FunctionCallingAgentWorker.from_tools(
meta_tools,
llm=llm,
)
agent1 = worker1.as_agent()
agent_server_1 = AgentService(
agent=agent1,
message_queue=message_queue,
description="Useful for getting stock information.",
service_name="stock_info_agent",
)
# launch it
launcher = LocalLauncher(
[agent_server_1, tool_service],
control_plane,
message_queue,
)
result = launcher.launch_single("What's the current price of AAPL and what does the company do?")
print(f"Result: {result}")
股票分析:
# 导入所需的库
import os
import logging
from dotenv import load_dotenv
import yfinance as yf
from llama_agents.launchers.local import LocalLauncher
from llama_agents.services import AgentService, ToolService
from llama_agents.tools import MetaServiceTool
from llama_agents.control_plane.server import ControlPlaneServer
from llama_agents.message_queues.simple import SimpleMessageQueue
from llama_agents.orchestrators.agent import AgentOrchestrator
from llama_index.core.agent import FunctionCallingAgentWorker
from llama_index.core.tools import FunctionTool
from llama_index.llms.openai import OpenAI
# 设置日志级别为INFO
logging.basicConfig(level=logging.INFO)# 加载.env文件中的环境变量
load_dotenv()# 从环境变量中获取OpenAI API密钥
api_key = os.getenv("OPENAI_API_KEY")# 确保API密钥已设置,否则抛出异常
if not api_key:
raise ValueError("OPENAI_API_KEY not found in .env file")# 设置OpenAI API密钥为环境变量
os.environ["OPENAI_API_KEY"] = api_key# 定义获取股票当前价格的函数
def get_stock_price(symbol: str) -> str:
"""获取给定股票代码的当前价格"""
try:
stock = yf.Ticker(symbol)
data = stock.history(period="1d")
if not data.empty:
current_price = data['Close'].iloc[-1]
return f"The current price of {symbol} is ${current_price:.2f}"
else:
return f"Unable to fetch the current price for {symbol}. The stock data is empty."
except Exception as e:
logging.error(f"Error fetching stock price for {symbol}: {str(e)}")
return f"Error fetching stock price for {symbol}: {str(e)}"# 定义获取公司信息的函数
def get_company_info(symbol: str) -> str:
"""获取给定股票代码的公司信息"""
try:
stock = yf.Ticker(symbol)
info = stock.info
return f"{info['longName']} ({symbol}) is in the {info.get('sector', 'Unknown')} sector. {info.get('longBusinessSummary', '')[:200]}..."
except Exception as e:
logging.error(f"Error fetching company info for {symbol}: {str(e)}")
return f"Error fetching company info for {symbol}: {str(e)}"# 定义获取财务比率的函数
def get_financial_ratios(symbol: str) -> str:
"""获取给定股票的关键财务比率"""
try:
stock = yf.Ticker(symbol)
info = stock.info
pe_ratio = info.get('trailingPE', 'N/A')
pb_ratio = info.get('priceToBook', 'N/A')
dividend_yield = info.get('dividendYield', 'N/A')
if dividend_yield != 'N/A':
dividend_yield = f"{dividend_yield * 100:.2f}%"
return f"{symbol} financial ratios: P/E: {pe_ratio}, P/B: {pb_ratio}, Dividend Yield: {dividend_yield}"
except Exception as e:
logging.error(f"Error fetching financial ratios for {symbol}: {str(e)}")
return f"Error fetching financial ratios for {symbol}: {str(e)}"# 定义获取分析师推荐的函数
def get_analyst_recommendations(symbol: str) -> str:
"""获取分析师对给定股票的推荐"""
try:
stock = yf.Ticker(symbol)
recommendations = stock.recommendations
if recommendations is not None and not recommendations.empty:
latest_rec = recommendations.iloc[-1]
return f"Latest analyst recommendation for {symbol}: {latest_rec['To Grade']} as of {latest_rec.name.date()}"
else:
return f"No analyst recommendations available for {symbol}"
except Exception as e:
logging.error(f"Error fetching analyst recommendations for {symbol}: {str(e)}")
return f"Unable to fetch analyst recommendations for {symbol} due to an error: {str(e)}"# 定义获取最新新闻的函数
def get_recent_news(symbol: str) -> str:
"""获取与给定股票相关的最新新闻"""
try:
stock = yf.Ticker(symbol)
news = stock.news
if news:
latest_news = news[0]
return f"Latest news for {symbol}: {latest_news['title']} - {latest_news['link']}"
else:
return f"No recent news available for {symbol}"
except Exception as e:
logging.error(f"Error fetching recent news for {symbol}: {str(e)}")
return f"Error fetching recent news for {symbol}: {str(e)}"# 定义获取行业比较的函数
def get_industry_comparison(symbol: str) -> str:
"""获取股票与行业平均水平的比较"""
try:
stock = yf.Ticker(symbol)
info = stock.info
sector = info.get('sector', 'Unknown')
industry = info.get('industry', 'Unknown')
pe_ratio = info.get('trailingPE', 'N/A')
industry_pe = info.get('industryPE', 'N/A') comparison = f"{symbol} is in the {sector} sector, specifically in the {industry} industry. "
if pe_ratio != 'N/A' and industry_pe != 'N/A':
if pe_ratio < industry_pe:
comparison += f"Its P/E ratio ({pe_ratio:.2f}) is lower than the industry average ({industry_pe:.2f}), which could indicate it's undervalued compared to its peers."
elif pe_ratio > industry_pe:
comparison += f"Its P/E ratio ({pe_ratio:.2f}) is higher than the industry average ({industry_pe:.2f}), which could indicate it's overvalued compared to its peers."
else:
comparison += f"Its P/E ratio ({pe_ratio:.2f}) is in line with the industry average ({industry_pe:.2f})."
else:
comparison += "Unable to compare P/E ratio with industry average due to lack of data." return comparison
except Exception as e:
logging.error(f"Error fetching industry comparison for {symbol}: {str(e)}")
return f"Unable to fetch industry comparison for {symbol} due to an error: {str(e)}"# 创建工具对象,每个工具对应一个函数
stock_price_tool = FunctionTool.from_defaults(fn=get_stock_price)
company_info_tool = FunctionTool.from_defaults(fn=get_company_info)
financial_ratios_tool = FunctionTool.from_defaults(fn=get_financial_ratios)
analyst_recommendations_tool = FunctionTool.from_defaults(fn=get_analyst_recommendations)
recent_news_tool = FunctionTool.from_defaults(fn=get_recent_news)
industry_comparison_tool = FunctionTool.from_defaults(fn=get_industry_comparison)# 指定使用的OpenAI模型
llm = OpenAI(model="gpt-4o", temperature=0)# 创建消息队列
message_queue = SimpleMessageQueue()# 创建工具服务,包含所有定义的工具
tool_service = ToolService(
message_queue=message_queue,
tools=[stock_price_tool, company_info_tool, financial_ratios_tool, analyst_recommendations_tool, recent_news_tool,
industry_comparison_tool],
running=True,
step_interval=0.5,
)# 创建控制平面服务器
control_plane = ControlPlaneServer(
message_queue=message_queue,
orchestrator=AgentOrchestrator(llm=llm),
)# 创建元工具列表,每个元工具对应一个实际工具
meta_tools = [
MetaServiceTool(
tool_metadata=tool.metadata,
message_queue=message_queue,
tool_service_name=tool_service.service_name,
) for tool in
[stock_price_tool, company_info_tool, financial_ratios_tool, analyst_recommendations_tool, recent_news_tool,
industry_comparison_tool]
]# 创建代理工作器,设置系统提示
worker1 = FunctionCallingAgentWorker.from_tools(
meta_tools,
llm=llm,
system_prompt="""你是一个专业的股票分析师。你的任务是分析给定的股票,并根据所有可用信息提供是否购买的建议。
请使用所有可用工具来收集相关信息,然后给出全面的分析和明确的建议。
考虑当前价格、公司信息、财务比率、分析师推荐、最新新闻和行业比较。
解释你的推荐理由,并提供一个清晰的"买入"、"持有"或"卖出"建议。
如果某些信息无法获取,请在分析中说明,并基于可用信息给出最佳判断。
"""
)# 将工作器转换为代理
agent1 = worker1.as_agent()# 创建代理服务
agent_server_1 = AgentService(
agent=agent1,
message_queue=message_queue,
description="Useful for analyzing stocks and providing investment recommendations.",
service_name="stock_analysis_agent",
)# 创建本地启动器
launcher = LocalLauncher(
[agent_server_1, tool_service],
control_plane,
message_queue,
)# 执行股票分析
result = launcher.launch_single("""
分析 AAPL 股票是否值得购买。
请考虑以下因素:
1. 当前股价
2. 公司基本信息
3. 关键财务比率(如 P/E、P/B、股息收益率)
4. 分析师推荐
5. 最新相关新闻
6. 与行业平均水平的比较
根据这些信息,给出你的投资建议(买入、持有或卖出)并详细解释理由。
如果某些信息无法获取,请在分析中说明,并基于可用信息给出最佳判断。
""")# 打印分析结果
print(f"Result: {result}")
RAG
import os
import logging
from dotenv import load_dotenv
# 导入必要的 llama_index 模块
from llama_index.core import (
SimpleDirectoryReader,
VectorStoreIndex,
StorageContext,
load_index_from_storage,
)
from llama_index.core.tools import QueryEngineTool, ToolMetadata
# 导入 llama_agents 相关模块
from llama_agents import (
AgentService,
ToolService,
LocalLauncher,
MetaServiceTool,
ControlPlaneServer,
SimpleMessageQueue,
AgentOrchestrator,
)
from llama_index.core.agent import FunctionCallingAgentWorker
from llama_index.llms.openai import OpenAI# 加载 .env 文件中的环境变量
load_dotenv()# 从环境变量中获取 OpenAI API 密钥
api_key = os.getenv("OPENAI_API_KEY")# 确保 API 密钥已设置,否则抛出异常
if not api_key:
raise ValueError("OPENAI_API_KEY not found in .env file")# 设置 OpenAI API 密钥为环境变量
os.environ["OPENAI_API_KEY"] = api_key# 设置 llama_agents 的日志级别为 INFO
logging.getLogger("llama_agents").setLevel(logging.INFO)# 加载并索引数据
def load_and_index_data():
try:
# 尝试从已保存的存储中加载索引
storage_context = StorageContext.from_defaults(persist_dir="./storage/lyft")
lyft_index = load_index_from_storage(storage_context) storage_context = StorageContext.from_defaults(persist_dir="./storage/uber")
uber_index = load_index_from_storage(storage_context)
except:
# 如果索引不存在,则创建新的索引
lyft_docs = SimpleDirectoryReader(input_files=["./data/10k/lyft_2021.pdf"]).load_data()
uber_docs = SimpleDirectoryReader(input_files=["./data/10k/uber_2021.pdf"]).load_data() lyft_index = VectorStoreIndex.from_documents(lyft_docs)
uber_index = VectorStoreIndex.from_documents(uber_docs) # 保存新创建的索引
lyft_index.storage_context.persist(persist_dir="./storage/lyft")
uber_index.storage_context.persist(persist_dir="./storage/uber") return lyft_index, uber_index# 设置查询引擎和工具
def setup_query_engines_and_tools(lyft_index, uber_index):
# 创建 Lyft 和 Uber 的查询引擎
lyft_engine = lyft_index.as_query_engine(similarity_top_k=3)
uber_engine = uber_index.as_query_engine(similarity_top_k=3) # 创建查询引擎工具列表
query_engine_tools = [
QueryEngineTool(
query_engine=lyft_engine,
metadata=ToolMetadata(
name="lyft_10k",
description="Provides information about Lyft financials for year 2021. "
"Use a detailed plain text question as input to the tool.",
),
),
QueryEngineTool(
query_engine=uber_engine,
metadata=ToolMetadata(
name="uber_10k",
description="Provides information about Uber financials for year 2021. "
"Use a detailed plain text question as input to the tool.",
),
),
] return query_engine_tools# 设置代理和服务
async def setup_agents_and_services(query_engine_tools):
# 创建消息队列
message_queue = SimpleMessageQueue()
# 创建控制平面服务器
control_plane = ControlPlaneServer(
message_queue=message_queue,
orchestrator=AgentOrchestrator(llm=OpenAI(model="gpt-4o")),
) # 创建工具服务
tool_service = ToolService(
message_queue=message_queue,
tools=query_engine_tools,
running=True,
step_interval=0.5,
) # 创建元工具列表
meta_tools = [
await MetaServiceTool.from_tool_service(
t.metadata.name,
message_queue=message_queue,
tool_service=tool_service,
)
for t in query_engine_tools
] # 创建函数调用代理工作器
worker1 = FunctionCallingAgentWorker.from_tools(
meta_tools,
llm=OpenAI(),
)
# 将工作器转换为代理
agent1 = worker1.as_agent()
# 创建代理服务
agent_server_1 = AgentService(
agent=agent1,
message_queue=message_queue,
description="Used to answer questions over Uber and Lyft 10K documents",
service_name="uber_lyft_10k_analyst_agent",
) # 创建本地启动器
launcher = LocalLauncher(
[agent_server_1, tool_service],
control_plane,
message_queue,
) return launcher# 主函数,用于运行整个脚本
async def main():
# 加载并索引数据
lyft_index, uber_index = load_and_index_data()
# 设置查询引擎和工具
query_engine_tools = setup_query_engines_and_tools(lyft_index, uber_index)
# 设置代理和服务
launcher = await setup_agents_and_services(query_engine_tools) # 示例查询
queries = [
"What are the risk factors for Uber?",
"What was Lyft's revenue growth in 2021?",
] # 执行查询并打印结果
for query in queries:
print(f"Query: {query}")
result = await launcher.alaunch_single(query) # 使用 alaunch_single 而不是 launch_single
print(f"Result: {result}\n")# 运行主函数
if __name__ == "__main__":
import asyncio loop = asyncio.get_event_loop()
loop.run_until_complete(main())
loop.close()
chainlit+llama-agents
import chainlit as cl
import os
import logging
from dotenv import load_dotenv
import yfinance as yf
from llama_agents.launchers.local import LocalLauncher
from llama_agents.services import AgentService, ToolService
from llama_agents.tools import MetaServiceTool
from llama_agents.control_plane.server import ControlPlaneServer
from llama_agents.message_queues.simple import SimpleMessageQueue
from llama_agents.orchestrators.agent import AgentOrchestrator
from llama_index.core.agent import FunctionCallingAgentWorker
from llama_index.core.tools import FunctionTool
from llama_index.llms.openai import OpenAI
# 设置日志
logging.basicConfig(level=logging.INFO)# 加载.env文件
load_dotenv()# 从环境变量中获取API密钥
api_key = os.getenv("OPENAI_API_KEY")# 确保API密钥已设置
if not api_key:
raise ValueError("OPENAI_API_KEY not found in .env file")# 设置OpenAI API密钥
os.environ["OPENAI_API_KEY"] = api_key
# 定义所有需要的函数
def get_stock_price(symbol: str) -> str:
"""获取给定股票代码的当前价格"""
try:
stock = yf.Ticker(symbol)
data = stock.history(period="1d")
if not data.empty:
current_price = data['Close'].iloc[-1]
return f"The current price of {symbol} is ${current_price:.2f}"
else:
return f"Unable to fetch the current price for {symbol}. The stock data is empty."
except Exception as e:
logging.error(f"Error fetching stock price for {symbol}: {str(e)}")
return f"Error fetching stock price for {symbol}: {str(e)}"
def get_company_info(symbol: str) -> str:
"""获取给定股票代码的公司信息"""
try:
stock = yf.Ticker(symbol)
info = stock.info
return f"{info['longName']} ({symbol}) is in the {info.get('sector', 'Unknown')} sector. {info.get('longBusinessSummary', '')[:200]}..."
except Exception as e:
logging.error(f"Error fetching company info for {symbol}: {str(e)}")
return f"Error fetching company info for {symbol}: {str(e)}"
def get_financial_ratios(symbol: str) -> str:
"""获取给定股票的关键财务比率"""
try:
stock = yf.Ticker(symbol)
info = stock.info
pe_ratio = info.get('trailingPE', 'N/A')
pb_ratio = info.get('priceToBook', 'N/A')
dividend_yield = info.get('dividendYield', 'N/A')
if dividend_yield != 'N/A':
dividend_yield = f"{dividend_yield * 100:.2f}%"
return f"{symbol} financial ratios: P/E: {pe_ratio}, P/B: {pb_ratio}, Dividend Yield: {dividend_yield}"
except Exception as e:
logging.error(f"Error fetching financial ratios for {symbol}: {str(e)}")
return f"Error fetching financial ratios for {symbol}: {str(e)}"
def get_analyst_recommendations(symbol: str) -> str:
"""获取分析师对给定股票的推荐"""
try:
stock = yf.Ticker(symbol)
recommendations = stock.recommendations
if recommendations is not None and not recommendations.empty:
latest_rec = recommendations.iloc[-1]
return f"Latest analyst recommendation for {symbol}: {latest_rec['To Grade']} as of {latest_rec.name.date()}"
else:
return f"No analyst recommendations available for {symbol}"
except Exception as e:
logging.error(f"Error fetching analyst recommendations for {symbol}: {str(e)}")
return f"Unable to fetch analyst recommendations for {symbol} due to an error: {str(e)}"
def get_recent_news(symbol: str) -> str:
"""获取与给定股票相关的最新新闻"""
try:
stock = yf.Ticker(symbol)
news = stock.news
if news:
latest_news = news[0]
return f"Latest news for {symbol}: {latest_news['title']} - {latest_news['link']}"
else:
return f"No recent news available for {symbol}"
except Exception as e:
logging.error(f"Error fetching recent news for {symbol}: {str(e)}")
return f"Error fetching recent news for {symbol}: {str(e)}"
def get_industry_comparison(symbol: str) -> str:
"""获取股票与行业平均水平的比较"""
try:
stock = yf.Ticker(symbol)
info = stock.info
sector = info.get('sector', 'Unknown')
industry = info.get('industry', 'Unknown')
pe_ratio = info.get('trailingPE', 'N/A')
industry_pe = info.get('industryPE', 'N/A') comparison = f"{symbol} is in the {sector} sector, specifically in the {industry} industry. "
if pe_ratio != 'N/A' and industry_pe != 'N/A':
if pe_ratio < industry_pe:
comparison += f"Its P/E ratio ({pe_ratio:.2f}) is lower than the industry average ({industry_pe:.2f}), which could indicate it's undervalued compared to its peers."
elif pe_ratio > industry_pe:
comparison += f"Its P/E ratio ({pe_ratio:.2f}) is higher than the industry average ({industry_pe:.2f}), which could indicate it's overvalued compared to its peers."
else:
comparison += f"Its P/E ratio ({pe_ratio:.2f}) is in line with the industry average ({industry_pe:.2f})."
else:
comparison += "Unable to compare P/E ratio with industry average due to lack of data." return comparison
except Exception as e:
logging.error(f"Error fetching industry comparison for {symbol}: {str(e)}")
return f"Unable to fetch industry comparison for {symbol} due to an error: {str(e)}"
# 创建全局变量来存储launcher
global_launcher = None
@cl.on_chat_start
async def start():
global global_launcher # 创建工具对象,每个工具对应一个函数
stock_price_tool = FunctionTool.from_defaults(fn=get_stock_price)
company_info_tool = FunctionTool.from_defaults(fn=get_company_info)
financial_ratios_tool = FunctionTool.from_defaults(fn=get_financial_ratios)
analyst_recommendations_tool = FunctionTool.from_defaults(fn=get_analyst_recommendations)
recent_news_tool = FunctionTool.from_defaults(fn=get_recent_news)
industry_comparison_tool = FunctionTool.from_defaults(fn=get_industry_comparison) # 指定 OpenAI 模型
llm = OpenAI(model="gpt-4o", temperature=0) # 创建多代理框架组件
message_queue = SimpleMessageQueue()
tool_service = ToolService(
message_queue=message_queue,
tools=[stock_price_tool, company_info_tool, financial_ratios_tool, analyst_recommendations_tool,
recent_news_tool,
industry_comparison_tool],
running=True,
step_interval=0.5,
)
control_plane = ControlPlaneServer(
message_queue=message_queue,
orchestrator=AgentOrchestrator(llm=llm),
)
meta_tools = [
MetaServiceTool(
tool_metadata=tool.metadata,
message_queue=message_queue,
tool_service_name=tool_service.service_name,
) for tool in
[stock_price_tool, company_info_tool, financial_ratios_tool, analyst_recommendations_tool, recent_news_tool,
industry_comparison_tool]
] # 创建代理工作器
worker1 = FunctionCallingAgentWorker.from_tools(
meta_tools,
llm=llm,
system_prompt="""你是一个专业的股票分析师。你的任务是分析给定的股票,并根据所有可用信息提供是否购买的建议。
请使用所有可用工具来收集相关信息,然后给出全面的分析和明确的建议。
考虑当前价格、公司信息、财务比率、分析师推荐、最新新闻和行业比较。
解释你的推荐理由,并提供一个清晰的"买入"、"持有"或"卖出"建议。
如果某些信息无法获取,请在分析中说明,并基于可用信息给出最佳判断。
"""
)
agent1 = worker1.as_agent()
agent_server_1 = AgentService(
agent=agent1,
message_queue=message_queue,
description="Useful for analyzing stocks and providing investment recommendations.",
service_name="stock_analysis_agent",
) # 启动
global_launcher = LocalLauncher(
[agent_server_1, tool_service],
control_plane,
message_queue,
) await cl.Message(content="股票分析助手已准备就绪。请输入您想分析的股票代码。").send()
@cl.on_message
async def main(message: cl.Message):
stock_symbol = message.content.strip().upper() prompt = f"""
分析 {stock_symbol} 股票是否值得购买。
请考虑以下因素:
1. 当前股价
2. 公司基本信息
3. 关键财务比率(如 P/E、P/B、股息收益率)
4. 分析师推荐
5. 最新相关新闻
6. 与行业平均水平的比较
根据这些信息,给出你的投资建议(买入、持有或卖出)并详细解释理由。
如果某些信息无法获取,请在分析中说明,并基于可用信息给出最佳判断。
""" result = await global_launcher.alaunch_single(prompt) await cl.Message(content=f"对 {stock_symbol} 的分析结果:\n\n{result}").send()